
Numerical Python

Linear Algebra

●
●
●
●
●
●
●

Linear Algebra

Linear Algebra

y = 4 * x + 1

Linear Algebra

y = 0.1 * x1 + 0.4 * x2
y = 0.3 * x1 + 0.9 * x2

Linear Algebra

1 = 0.1 * x1 + 0.4 * x2
3 = 0.3 * x1 + 0.9 * x2

Linear Algebra

 5 = 0.1 * x1 + 0.4 * x2 + x3
10 = 0.3 * x1 + 0.9 * x2 + 2.0 * x3
 3 = 0.2 * x1 + 0.3 * x2 - .5 * x3

Linear Algebra

● You can multiply any row by a constant (other than zero).

●

● You can switch any two rows.

●

● You can add two rows together.

●

Linear Algebra

Linear Algebra
Transpose

A defined matrix can be transposed, which creates a new matrix with the

number of columns and rows flipped.

This is denoted by the superscript “T” next to the matrix.

An invisible diagonal line can be drawn through the matrix from top left to

bottom right on which the matrix can be flipped to give the transpose.

Linear Algebra
Inversion

Matrix inversion is a process that finds another matrix that when multiplied

with the matrix, results in an identity matrix.

Given a matrix A, find matrix B, such that AB or BA = In.

The operation of inverting a matrix is indicated by a -1 superscript next to

the matrix; for example, A^-1. The result of the operation is referred to as

the inverse of the original matrix; for example, B is the inverse of A.

Linear Algebra

Trace

A trace of a square matrix is the sum of the values on the main

diagonal of the matrix (top-left to bottom-right).

Linear Algebra
Determinant

The determinant of a square matrix is a scalar representation of the

volume of the matrix.

The determinant describes the relative geometry of the vectors that

make up the rows of the matrix. More specifically, the determinant

of a matrix A tells you the volume of a box with sides given by rows

of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017

http://amzn.to/2k76D4C

Linear Algebra

Matrix Rank

The rank of a matrix is the estimate of the number of linearly

independent rows or columns in a matrix.

Linear Algebra - Matrix Arithmetic

Matrix Addition

Two matrices with the same dimensions can be added together to

create a new third matrix.

C = A + B

 C[0,0] = A[0,0] + B[0,0]
 C[1,0] = A[1,0] + B[1,0]
 C[2,0] = A[2,0] + B[2,0]
 C[0,1] = A[0,1] + B[0,1]
 C[1,1] = A[1,1] + B[1,1]
 C[2,1] = A[2,1] + B[2,1]

Linear Algebra - Matrix Arithmetic

Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same

dimensions.

C = A - B

 C[0,0] = A[0,0] - B[0,0]
 C[1,0] = A[1,0] - B[1,0]
 C[2,0] = A[2,0] - B[2,0]
 C[0,1] = A[0,1] - B[0,1]
 C[1,1] = A[1,1] - B[1,1]
 C[2,1] = A[2,1] - B[2,1]

Linear Algebra - Matrix Arithmetic
Matrix Multiplication (Hadamard Product)

Two matrices with the same size can be multiplied together, and this is often called

element-wise matrix multiplication or the Hadamard product.

It is not the typical operation meant when referring to matrix multiplication, therefore a different

operator is often used, such as a circle “o”.

C = A o B
C[0,0] = A[0,0] * B[0,0]
C[1,0] = A[1,0] * B[1,0]
C[2,0] = A[2,0] * B[2,0]
C[0,1] = A[0,1] * B[0,1]
C[1,1] = A[1,1] * B[1,1]
C[2,1] = A[2,1] * B[2,1]

Linear Algebra - Matrix Arithmetic

Matrix Division

One matrix can be divided by another matrix with the same

dimensions.

C = A / B
C[0,0] = A[0,0] / B[0,0]
C[1,0] = A[1,0] / B[1,0]
C[2,0] = A[2,0] / B[2,0]
C[0,1] = A[0,1] / B[0,1]
C[1,1] = A[1,1] / B[1,1]
C[2,1] = A[2,1] / B[2,1]

Linear Algebra - Matrix Arithmetic
Matrix-Matrix Multiplication (Dot Product)

Matrix multiplication, also called the matrix dot product is more complicated than the previous

operations and involves a rule as not all matrices can be multiplied together.

One of the most important operations involving matrices is multiplication of two

matrices. The matrix product of matrices A and B is a third matrix C. In order for this

product to be defined, A must have the same number of columns as B has rows. If A is

of shape m × n and B is of shape n × p, then C is of shape m × p.

— Page 34, Deep Learning, 2016.

http://amzn.to/2B3MsuU

Linear Algebra - Matrix Arithmetic
Matrix-Matrix Multiplication (Dot Product)

 a11, a12
A = a21, a22
 a31, a32

 b11, b12
B = b21, b22

 a11 * b11 + a12 * b21, a11 * b12 + a12 * b22
C = a21 * b11 + a22 * b21, a21 * b12 + a22 * b22
 a31 * b11 + a32 * b21, a31 * b12 + a32 * b22

•
•

–
–
–

•
–
–
–

•

•

•

•

•

• ≈

•

•

• ẽ ẽ

•

•

•
•
•

⟹ ⟹

•
•

•
•
•

Given a square system of n linear equations:

where:

•
•

•
•

•
•

•
•

•
•

•
•

•

≠

Given a square system of n linear equations:

where:

•
•

•
•
•

•
•

•
•

•
•

•

•
•

•

Python - NumPy

NumPy, First Steps

import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)

NumPy, First Steps

print(C * 9 / 5 + 32)

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

NumPy, Cooler things
import time
size_of_vec = 1000
def pure_python_version():
 t1 = time.time()
 X = range(size_of_vec)
 Y = range(size_of_vec)
 Z = []
 for i in range(len(X)):
 Z.append(X[i] + Y[i])
 return time.time() - t1

def numpy_version():
 t1 = time.time()
 X = np.arange(size_of_vec)
 Y = np.arange(size_of_vec)
 Z = X + Y
 return time.time() - t1

NumPy, Cooler things

t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.

NumPy, Multi-Dimension Arrays
A = np.array([[3.4, 8.7, 9.9],
 [1.1, -7.8, -0.7],
 [4.1, 12.3, 4.8]])
print(A)
print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B)
print(B.ndim)

NumPy, Multi-Dimension Arrays

x = np.array([[67, 63, 87],
 [77, 69, 59],
 [85, 87, 99],
 [79, 72, 71],
 [63, 89, 93],
 [68, 92, 78]])
print(np.shape(x))

The shape function:

NumPy, Multi-Dimension Arrays

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:

NumPy, Multi-Dimension Arrays

x = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B.shape)

A couple more examples of shape:

NumPy, Multi-Dimension Arrays

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index 0

print(F[0])

print the last element of F

print(F[-1])

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B[0][1][0])

indexing:

NumPy, Multi-Dimension Arrays

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:

NumPy, Multi-Dimension Arrays

np.identity(4)

function to create an identity array

NumPy, By Example

 def TimeStep(self, dt=0.0):
 """Takes a time step using straight forward Python loops."""
 g = self.grid
 nx, ny = g.u.shape
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 err = 0.0
 for i in range(1, nx-1):
 for j in range(1, ny-1):
 tmp = u[i,j]
 u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
 (u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
 diff = u[i,j] - tmp
 err += diff*diff
 return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example

def numericTimeStep(self, dt=0.0):
 """Takes a time step using a NumPy expression."""
 g = self.grid
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 g.old_u = u.copy() # needed to compute the error.

 # The actual iteration
 u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
 (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

 return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, Exercise
Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
 * Start iterating, k=0
 * While not converged do
 * Start your i-loop (for i = 1 to n)
 * sigma = 0
 * Start your j-loop (for j = 1 to n)
 * If j not equal to i
 * sigma = sigma + a[i][j] * x[j][k]
 * End j-loop
 * x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D
 * End i-loop
 * Check for convergence
 * Iterate k, ie. k = k+1

Jacobi

Questions? Comments?

