1T»xCC S TEXAS

TEXAS ADVANCED COMPUTING CENTER) The University of Texas at Austin

WWW.TACC.UTEXAS.EDU

Numerical Python

S. Charlie Dey, Director of Training and Professional Development

Science on the Cloud, 2019

Linear Algebra

Applications

Matrices in Engineering, such as a line of springs.

Graphs and Networks, such as analyzing networks.

Markov Matrices, Population, and Economics, such as population growth.

Linear Programming, the simplex optimization method.

Fourier Series: Linear Algebra for functions, used widely in signal processing.

Linear Algebra for statistics and probability, such as least squares for regression.
Computer Graphics, such as the various translation, rescaling and rotation of images.

Linear Algebra

Linear algebra is about linear combinations.

Using math on columns of numbers called vectors and arrays
of numbers called matrices to create new columns and
arrays of numbers.

Linear algebra is the study of lines and planes, vector spaces
and mappings that are required for linear transforms.

Linear Algebra

Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:
y =4 * x +1

describes a line on a two-dimensional graph

Linear Algebra

Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:

y
y

0.1 * x1 + 0.4 * x2
0.3 * x1 + 0.9 * x2

line up a system of equations with the same form with two or more unknowns

Linear Algebra

Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:

1 0.1 * x1 + 0.4 * x2
3 0.3 * x1 + 0.9 * x2

line up a system of equations with the same form with two or more unknowns

Linear Algebra

Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following, Ax=b :

5=0.1 * x1 + 0.4 * x2 + x3
10 = 0.3 * x1 + 0.9 * %2 + 2.0 * x3
3 =0.2 *x1 + 0.3 * %x2 - .5 * x3

Is there a x1, x2, x3 that solves this system?

Linear Algebra

Gaussian Elimination

The goals of Gaussian elimination are to make the upper-left corner elementa 1
use elementary row operations to get Os in all positions underneath that first 1

get 1s for leading coefficients in every row diagonally from the upper-left to lower-right corner,
and get Os beneath all leading coefficients.

you eliminate all variables in the last row except for one, all variables except for two in the
equation above that one, and so on and so forth to the top equation, which has all the
variables. Then use back substitution to solve for one variable at a time by plugging the values
you know into the equations from the bottom up..

Linear Algebra

Gaussian Elimination, Rules

e You can multiply any row by a constant (other than zero).
° =2r, 51y

e You can switch any two rows.

i Ll

e You can add two rows together.

TACC

Linear Algebra

Transpose

A defined matrix can be transposed, which creates a new matrix with the

number of columns and rows flipped.
This is denoted by the superscript “T” next to the matrix.

An invisible diagonal line can be drawn through the matrix from top left to

bottom right on which the matrix can be flipped to give the transpose.

TACC »

10

Linear Algebra

Inversion
Matrix inversion is a process that finds another matrix that when muiltiplied
with the matrix, results in an identity matrix.

Given a matrix A, find matrix B, such that AB or BA = In.

The operation of inverting a matrix is indicated by a -1 superscript next to
the matrix; for example, AA-1. The result of the operation is referred to as

the inverse of the original matrix; for example, B is the inverse of A.

TACC

Linear Algebra

Trace

A trace of a square matrix is the sum of the values on the main

diagonal of the matrix (top-left to bottom-right).

TACC

12

Linear Algebra

Determinant

The determinant of a square matrix is a scalar representation of the

volume of the matrix.

The determinant describes the relative geometry of the vectors that
make up the rows of the matrix. More specifically, the determinant
of a matrix A tells you the volume of a box with sides given by rows

of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017

13

http://amzn.to/2k76D4C

Linear Algebra

Matrix Rank

The rank of a matrix is the estimate of the number of linearly

independent rows or columns in a matrix.

TACC

14

Linear Algebra - matrix Arithmetic

Matrix Addition

Two matrices with the same dimensions can be added together to

create a new third matrix.

C=A+8B

c[0,0] = A[O0,0] + B[O,0]

C[1,0] = A[1,0] + B[1,0]

C[2,0] = A[2,0] + B[2,0]

c[o,1] = a[o0,1] + B[O,1]

C[1,1] = A[1,1] + B[1,1]
= A[2,1] + B[2,1]

TACC

Linear Algebra - matrix Arithmetic

Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same

dimensions.

C=A-B

Cc[0,0] = A[0,0] - B[0,0]
C[1,0] = A[1,0] - B[1,0]
C[2,0] = A[2,0] - B[2,0]
Cc[0,1] = A[0,1] - B[O,1]
Cc[1l,1] = A[1,1] - B[1,1]
c[2,1] = A[2,1] - B[2,1]

TACC

Linear Algebra - matrix Arithmetic

Matrix Multiplication (Hadamard Product)
Two matrices with the same size can be multiplied together, and this is often called

element-wise matrix multiplication or the Hadamard product.

It is not the typical operation meant when referring to matrix multiplication, therefore a different

operator is often used, such as a circle “0”.

C=Ao0oB

c[0,0] = A[0,0] * B[O,0]

c[1,0] = A[1,0] * B[1,0]

Cc[2,0] = A[2,0] * B[2,0]

c[o,1] = a[o,1] * B[O,1]

c[1,1] = a[1,1] * B[1,1]
= *

C[2,1] = A[2,1] * B[2,1]

Linear Algebra - matrix Arithmetic

Matrix Division

One matrix can be divided by another matrix with the same

dimensions.

C=A/B

c[0,0] = A[0,0] / B[O,0]
C[1,0] = A[1,0] / B[1,0]
C[2,0] = A[2,0] / B[2,0]
c[0,1] = A[O0,1] / B[O,1]
c[1,1] = A[1,1] / B[1,1]
Cc[2,1] = A[2,1] / B[2,1]

Linear Algebra - matrix Arithmetic

Matrix-Matrix Multiplication (Dot Product)

Matrix multiplication, also called the matrix dot product is more complicated than the previous

operations and involves a rule as not all matrices can be multiplied together.

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order for this
product to be defined, A must have the same number of columns as B has rows. If A is

of shape m x n and B is of shape n x p, then C is of shape m x p.

— Page 34, Deep Learning, 2016.

19

http://amzn.to/2B3MsuU

Linear Algebra - matrix Arithmetic

Matrix-Matrix Multiplication (Dot Product)

all, al2
A = a2l, a22
a3l, a32
bll, bl2
B = b21, b22

all * bll + al2 * b21, all * bl2 + al2 * b22
C = a2l * bll + a22 * b21, a2l1 * bl2 + a22 * b22
a3l * bll + a32 * b2l1, a3l * bl2 + a32 * b22

Numerical Linear Algebra, Two Different
Approaches

e Solve Ax=0b
e Direct methods:
— Deterministic
— Exact, up to machine precision
— Expensive (in time and space)
* Iterative methods:
— Only approximate
— Cheaper in space and (possibly) time
— Convergence not guaranteed

TACC

lterative Methods

Choose any X, and repeat

x*t1 — Bxk 4+ c

until
[xKHL — Xk < €
or until
||xk+1—xk||2
< €
[x|

TACC

Example of Iterative Solution

Example system 10 0 1 X1 21
1/2 T 1 x| =19
1 0 6 X3 8

with solution (2,1,1)
Suppose you know (physics) that solution components are roughly the same size, and
observe the dominant size of the diagonal, then

(7 J)E)-C)

might be a gOOd apprL}I\IIIIGLIUII. QUIULIVIILI \&.L, Jy 7, 8/6)

TACC

Iterative Example

Example system 0 0 1 ” 21
12 7 1| |x]=1]09
1 0 6/ \uxs 8

1 0 6 X3
with solution (2.1, 7.95//, 5.9/0)

TACC

with solution (2,1,1) 10 i 21
Also easy to solve: (1/2 7) (X2> — (9

Iterative Example

* Instead of solving Ax=b wesolved |% — p.
X

* Look for the missing part: % = x + Ax, then AAx = Ax — b =
* Solve again LAx =r and update § _ ¢ A\;(

iteration 1 2 3

X1 2.1000 2.0017 2.000028

X0 1.1357 1.0023 1.000038

X3 0.9833 0.9997 0.999995

 Two decimals per iteration. This is not typical

 Exact system solving: O(n’®) cost; iteration: O(n?) per iteration. Potentially cheaper
if the number of iterations is low.

Abstract Presentation

To solve Ax = b; too expensive; suppose K= A and solving Kx = b is

possible
Define Kx, = b, then error correction X,=Xx+e, and A(xo - eO) =b

so Ae, = Ax, - b= r,, this is again unsolvable, so

KeO and X, =X, €,

Now iterate: e, =X, -X Ael = Axl -b = r, et cetera

Error Analysis

» Onestep nn = Axq—b=A(xp—&)—b (2)
= rnn—AK ' (3)
= (I—-AK) (4)

* Inductively: .
— (I — AK-1)n FIN — AK-D)| < 1
* Geometric rEdC,z,LlLu(l \UI GIIIPIII)Ib’(;OLI?JOII{’n \L O : | ()l <

e This is 'stationary iteration': every iteration step the same. Simple analysis, limited
applicability

TACC

Computationally

If A=K-N
then Ax=b=Kx=Nx+b=Kx_ =Nx +b
(because Kx = Nx +b is a "fixed point" of an iteration)

Equivalent to the above, and you don't actually need to form the
residual

TACC

Choice of K

 The closer Kis to A, the faster the convergence

* Diagonal and lower triangular choice mentioned above: letA=D, +L, + U,
be a splitting into diagonal, lower triangular, upper triangular part, then

* Jacobi method: K =D, (diagonal part),

* Gauss-Seidel method: K =D, + L, (lower triangle, including diagonal)

e SOR method:
K =wDa+ La

TACC

Jacobi in Pictures

/)] /\'

(n)

< @ ? _/?\/ 7
x(™D @ o »

TACC

Jacobi Method

Given a square system of n linear equations:

Ax=b
where:
-au g - al-n- --’1?1- by
1= a1 G -+~ a2-n‘ . 51?2’ b — by

Jacobi Method

Then A can be decomposed into a diagonal component D, and the remainder R:

ag; 0 - 0 0 ap - ap

0 aw --- 0 a 0 - ay,
A= D+R where D=1 _22 _ | and R = 2 2

0 0 "t lpp n1 Opz - 0

Jacobi Method

The solution is then obtained iteratively via
X(k-{—l:l — D—l(b _ RX{F“:I‘).

(k)

, et
where X +1)

is the kth approximation or iteration of Xand X " is the

next or k + 1 iteration of . The element-based formula is thus:

TR 1) .
;lfif"+1’l = — bi —_— Z G,jj;l?;k"l y 1= 1. 2., IS

J#F

The computation of x “*") requires each element in x¥ except itself. Unlike

the Gauss—Seidel method, we can't overwrite x) with x *Y), as that value will be
needed by the rest of the computation. The minimum amount of storage is two
vectors of size n.

Jacobi Method

Algorithm.

* Choose your initial guess, x[0]
* Startiterating, k=0

* While not converged do

* Start youri-loop (fori=1ton)
* sigma=0
* Start your j-loop (forj=1ton)
* Ifjnotequaltoi
* sigma =sigma + a[i][j] * x[j]k

* Endj-loop
* x[i], = (b[i] - sigma)/ali][i]
* Endi-loop

* Check for convergence
* lteratek, ie. k = k+1

What about the Lower and Upper
Triangles?

If we write D, L, and U for the diagonal, strict lower triangular and strict upper triangular and
parts of A, respectively,

-all 0 - 0O [0 0O R | 0 ayy aln-
0 ay, : ay 0 : o 0
p=| . * A and U=[. ,
0 T Y I
0 aun 0 ann anl _— ann_l 0 0 aun 0 O

then Jacobi’s Method can be written in matrix-vector notation as
DY (2+)™ = b
so that

£ = p(-L-x® + 8],

GS In Pictures

.
' } }
XD @ ® ® e

TACC

Gauss-Seidel

| K= DA + LA *
Algorithm: Ax=b => (D, +L +U)x=b
for k=1, ... until convergence, do: (D, +L)Xk+1 U, Xé“ +b

fori=1..n: {D J=a. {U, or L =0, 17

k+1 (k+1 k
//5”1(+)+Zj<lau J +k))1 Z>/al_lx():-b -
i(+) (ZJ<Ia'J (+)) Zj>laux()+b)
Implementation:

for k=1, ... until convergence, do:
fori=1...n:

1
Xi = a;; (— Zj;éi ajjX; + b;)

TACC

Gauss-Seidel Method

Given a square system of n linear equations:

Ax=b
where;:) o o
1y Qg - Qin I by
p1 Q2 -+ f(an Iy by
A= .) , 1, x=1 .1, b=
p1 Apz - Unn Tn _bn_

TACC

Gauss-Seidel Method

11 0 T 0 0 a1 -+ din

a (1 - O 0 0 e on
A=L+4U where L,=| 2 2 7| U= 2

n1 Qp2 - Onn 0 0 T 0

The system of linear equations may be rewritten as:
Lx=b-Ux

TACC

Gauss-Seidel Method

It is defined by the iteration
k+1) _ k
Lx®) =p - Uux®),
k+1

k
where X is the kth approximation or iteration of x, X is the next or k + 1

iteration of x, and the matrix A is decomposed into a lower
triangular component *~#*, and a strictly upper

triangular component U: *'—1 — L* + U.”‘

Which gives us: x"**V = L;'(b — Ux").

However, by taking advantage of the triangular form of L*, the
elements of x*" can be computed sequentially using forward
substitution:

. 1 -
= L (Yt Sl =12 n

J<i joi

Gauss-Seidel Method

Algorithm:

* Choose your initial guess, theta[0]
* While not converged do:
* Start youri-loop (fori=1ton)
* sigma=0
e Start your j-loop (forj=1ton)
* Ifjnotequaltoi
* sigma =sigma + a[i][j] * thetalj]

* Endj-loop
* theta[i] = (b[i] — sigma)/a[i][i]
* Endi-loop

* Check for convergence
* iterate

Stopping Tests

When to stop converging? Can size of the error be guaranteed?
* Direct tests on errore_=x-x_impossible; two choices
* Relative change in the computed solution small:

[Xn1 = Xal|/[[Xn]] <€
e Residual small enough:

Irall = | Axn — bl| <€

Without proof: both nnpiy uiat uie errur 1s 1ess uian some other ;

TACC |

Python - NumPy

"Numerical Python"

open source extension module for Python
provides fast precompiled functions for
mathematical and numerical routines

adds powerful data structures for efficient
computation of multi-dimensional arrays and
matrices.

NumPy, First Steps

Let build a simple list, turn it into a numpy array
and perform some simple math.

import numpy as np

cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)

print(C)

TACC

44

NumPy, First Steps

Let build a simple list, turn it into a numpy array
and perform some simple math.

print(C * 9 / 5 + 32)

VS.

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

TACC

45

NumPy, Cooler things

def

import time
size_of_vec = 1000

pure_python_version():

t1 = time.time()

X = range(size_of_vec)

Y = range(size_of_vec)

Z =[]

for i in range(len(X)):
Z.append(X[i] + Y[i])

return time.time() - t1

def

numpy_version():

t1 = time.time()

X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
Z=X+Y

return time.time() - t1

46

NumPy, Cooler things

Let's see which is faster.

tl1 = pure_python_version()
t2 = numpy_version()
print(tl, t2)

47

NumPy, Multi-Dimension Arrays

A = np.array([[3.4, 8.7, 9.9],
[1.1, -7.8, -0.7],
[4.1, 12.3, 4.8]])

print(A)

print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]] 1)

print(B)

print(B.ndim)

TACC

48

NumPy, Multi-Dimension Arrays

The shape function:

x = np.array([[67,
[77,
[85,
[79,
[63,
[68,
print(np.shape(x))

63,
69,
87,
72,
89,
92,

871,
597,
99],
71],
93],

7811)

TACC

49

NumPy, Multi-Dimension Arrays

The shape function can also *change* the shape:

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

50

NumPy, Multi-Dimension Arrays

A couple more examples of shape:

X = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],

[[311, 312], [321, 322]] 1)
print(B.shape)

51

NumPy, Multi-Dimension Arrays

iIndexing:

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index ©
print(F[0])

print the last element of F
print(F[-1])

B = np.array([[[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]]])
print(B[@][1][e])

52

NumPy, Multi-Dimension Arrays

slicing:

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

TACC

53

NumPy, Multi-Dimension Arrays

function to create an identity array

np.identity(4)

54

NumPy, By Example

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that V2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

def TimeStep(self, dt=0.0):
"""Takes a time step using straight forward Python loops."""
g = self.grid
nx, ny = g.u.shape
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
= g.u
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,]]
uli,j] = ((u[i-1, j] + u[i+1l, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff
return numpy.sqrt(err)

NumPy, By Example

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that V2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

def numericTimeStep(self, dt=0.0):
"""Takes a time step using a NumPy expression.
g = self.grid
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
u=g.u
g.old_u = u.copy() # needed to compute the error.

The actual iteration
uf1:-1, 1:-1] = ((u[@:-2, 1:-1] + u[2:, 1:-1])*dy2 +
(u[1:-1,0:-2] + u[1l:-1, 2:])*dx2)*dnr_inv

return_g.computeError()

56

NumPy, Exercise

Jacobi

Algorithm.

* Find D, the Diagonal of of A : diag(A)
* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
* Start iterating, k=0

* While not converged do

* Start your i-loop (for i = 1 to n)
* sigma = ©
* Start your j-loop (for j = 1 to n)
* If j not equal to 1
* sigma = sigma + a[i][j] * x[j][k]
* End j-loop

* x[i]lk = (b[i] - sigma)/a[i][i] : x = (b - dot(R,x)) / D

* End i-loop
* Check for convergence
* Iterate k, ie. k = k+1

57

Questions? Comments?

