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Agenda
● Introduction to the Jupyter Notebook
● Numpy Array vs Standard List
● Threads and Processors
● Vectorization
● Using Numpy with Threads
● Pandas
● Data Science
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What are Jupyter Notebooks?
A web-based, interactive computing tool for 
capturing the whole computation process: 
developing, documenting, and executing code, 
as well as communicating the results.
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How do Jupyter Notebooks Work?
An open notebook has exactly one interactive session connected to a kernel 

which will execute code sent by the user and communicate back results. 
This kernel remains active if the web browser window is closed, and 
reopening the same notebook from the dashboard will reconnect the web 
application to the same kernel.

What's this mean?
Notebooks are an interface to kernel, the kernel executes your code and 

outputs back to you through the notebook. The kernel is essentially our 
programming language we wish to interface with.

4



Jupyter Notebooks, Structure
• Code Cells

 Code cells allow you to enter and run code
Run a code cell using Shift-Enter

• Markdown Cells
 Text can be added to Jupyter Notebooks using Markdown cells. 
Markdown is a popular markup language that is a superset of 
HTML.
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Jupyter Notebooks, Structure
• Markdown Cells

 You can add headings:

 # Heading 1
# Heading 2
## Heading 2.1
## Heading 2.2

 You can add lists

 1. First ordered list item
2. Another item
⋅⋅* Unordered sub-list. 
1. Actual numbers don't matter, just that it's a number
⋅⋅1. Ordered sub-list
4. And another item.
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Jupyter Notebooks, Structure
• Markdown Cells

 pure HTML
 <dl>
  <dt>Definition list</dt>
  <dd>Is something people use sometimes.</dd>

  <dt>Markdown in HTML</dt>
  <dd>Does *not* work **very** well. Use HTML <em>tags</em>.</dd>
</dl>

 And even, Latex!

 $e^{i\pi} + 1 = 0$
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Jupyter Notebooks, Workflow

Typically, you will work on a computational problem in 
pieces, organizing related ideas into cells and moving 
forward once previous parts work correctly. This is much 
more convenient for interactive exploration than breaking 
up a computation into scripts that must be executed 
together, as was previously necessary, especially if parts of 
them take a long time to run.
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Jupyter Notebooks, Workflow

 Let a traditional paper lab notebook be your guide:
 Each notebook keeps a historical (and dated) record of the analysis 

as it’s being explored.

 The notebook is not meant to be anything other than a place for 
experimentation and development.

 Notebooks can be split when they get too long.

 Notebooks can be split by topic, if it makes sense.
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Jupyter Notebooks, Shortcuts
● Shift-Enter: run cell

● Execute the current cell, show output (if any), and jump to the next 

cell below. If Shift-Enter is invoked on the last cell, a new code 

cell will also be created. Note that in the notebook, typing Enter on 

its own never forces execution, but rather just inserts a new line in 

the current cell. Shift-Enter is equivalent to clicking the Cell | 

Run menu item.
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Jupyter Notebooks, Shortcuts
● Ctrl-Enter: run cell in-place

● Execute the current cell as if it were in “terminal mode”, where any 

output is shown, but the cursor remains in the current cell. The cell’s 

entire contents are selected after execution, so you can just start 

typing and only the new input will be in the cell. This is convenient 

for doing quick experiments in place, or for querying things like 

filesystem content, without needing to create additional cells that 

you may not want to be saved in the notebook.
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Jupyter Notebooks, Shortcuts
● Alt-Enter: run cell, insert below

● Executes the current cell, shows the output, and inserts a new cell 

between the current cell and the cell below (if one exists). (shortcut 

for the sequence Shift-Enter,Ctrl-m a. (Ctrl-m a adds a new 

cell above the current one.))

● Esc and Enter: Command mode and edit mode

● In command mode, you can easily navigate around the notebook 

using keyboard shortcuts. In edit mode, you can edit text in cells.
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Python - Variables, Refresh
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in a code cell:
five = 5
one = 1
twodot = 2.0
print (five)
print (one + one)
message = “This is a string”
print (message)
Notice: We're not "typing" our variables, we're just setting them and allowing Python to type 
them for us.



Python - Data Types, refresh
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integer_variable = 100
floating_point_variable = 100.0
string_variable = “Name”

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type 
them for us.



Python - Data Types
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Variables have a type

 You can check the type of a variable by using the type() function:
 print (type(integer_variable))

It is also possible to change the type of some basic types:

 str(int/float): converts an integer/float to a string
 int(str): converts a string to an integer
 float(str): converts a string to a float

Be careful: you can only convert data that actually makes sense to be 
transformed



Python - lists
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 A list is a sequence, where each element is assigned a position (index)
 First position is 0. You can access each position using []
 Elements in the list can be of different type

mylist1 = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]
mylist3 = [“first”, “second”, 3]
print(mylist1[0], mylist1[1])
print(mylist2[0])
print(mylist3)
print(mylist3[0], mylist3[1], mylist3[2])
print(mylist2[0] + mylist3[2])



Python - lists
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 It’s possible to use slicing:
    print(mylist3[0:3])
    print(mylist3)

 
 To change the value of an element in a list, simply assign it a new value:
    mylist3[0] = 10
    print(mylist3)



Python - lists
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 There’s a function that returns the number of elements in a list
    len(mylist2)

 
 Check if a value exists in a list:
    1 in mylist2

 
 Delete an element
    len(mylist2)
    del mylist2[0]
    print(mylist2)

 
 Iterate over the elements of a list:

    for x in mylist2:
        print(x)



Python - lists
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 There are more functions
    max(mylist), min(mylist) 

 
 It’s possible to add new elements to a list:

    my_list.append(new_item)
 
 We know how to find if an element exists, there’s a way to return the 

position of that element:
   my_list.index(item)

 
 Or how many times a given item appears in the list:

    my_list.count(item)



Python - Anonymous Functions
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type the following into a cell:

x = lamda a: a * 10

print (x(10))



Python - Anonymous Functions
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try the following definition:
def myfunc(x):

   return lambda a: a*x

y = myfunc(10)

print (y(5))

z = myfunc(100)

print (z(5))



Python - NumPy
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"Numerical Python"

 open source extension module for Python
 provides fast precompiled functions for 

mathematical and numerical routines
 adds powerful data structures for efficient 

computation of multi-dimensional arrays and 
matrices. 



NumPy, First Steps

Numpy gives us the array
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import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)



NumPy, First Steps

And gives us an easier way to perform some 
simple math on them

vs.
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print(C * 9 / 5 + 32)

fvalues = [ x*9/5 + 32 for x in cvalues] 
print(fvalues)



NumPy, Multi-Dimension Arrays
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A = np.array([ [3.4, 8.7, 9.9], 
               [1.1, -7.8, -0.7],
               [4.1, 12.3, 4.8]])
print(A)
print(A.ndim)

B = np.array([ [[111, 112], [121, 122]],
               [[211, 212], [221, 222]],
               [[311, 312], [321, 322]] ])
print(B)
print(B.ndim)



NumPy, Multi-Dimension Arrays
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x = np.array([ [67, 63, 87],
               [77, 69, 59],
               [85, 87, 99],
               [79, 72, 71],
               [63, 89, 93],
               [68, 92, 78]])
print(np.shape(x))

The shape function:



NumPy, Multi-Dimension Arrays
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x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:



NumPy, Multi-Dimension Arrays

28

x = np.array(42)
print(np.shape(x))

B = np.array([ [[111, 112], [121, 122]],
               [[211, 212], [221, 222]],
               [[311, 312], [321, 322]] ])
print(B.shape)

A couple more examples of shape:



NumPy, Multi-Dimension Arrays
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F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

# print the first element of F, i.e. the element with the index 0

print(F[0])

# print the last element of F

print(F[-1])

B = np.array([ [[111, 112], [121, 122]],
               [[211, 212], [221, 222]],
               [[311, 312], [321, 322]] ])
print(B[0][1][0])

indexing:



NumPy, Multi-Dimension Arrays
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A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:



NumPy, Multi-Dimension Arrays
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np.identity(4)

function to create an identity array



NumPy, By Example
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   def TimeStep(self, dt=0.0):
        """Takes a time step using straight forward Python loops."""
        g = self.grid
        nx, ny = g.u.shape
        dx2, dy2 = g.dx**2, g.dy**2
        dnr_inv = 0.5/(dx2 + dy2)
        u = g.u
        err = 0.0
        for i in range(1, nx-1):
            for j in range(1, ny-1):
                tmp = u[i,j]
                u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
                         (u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
                diff = u[i,j] - tmp
                err += diff*diff
        return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an 
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal 
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such 
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be 
a rectangle and the boundary values at the sides of this rectangle are given.



NumPy, By Example
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def numericTimeStep(self, dt=0.0):
    """Takes a time step using a NumPy expression."""
    g = self.grid
    dx2, dy2 = g.dx**2, g.dy**2
    dnr_inv = 0.5/(dx2 + dy2)
    u = g.u
    g.old_u = u.copy() # needed to compute the error.

    # The actual iteration
    u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
                     (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

    return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an 
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal 
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such 
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be 
a rectangle and the boundary values at the sides of this rectangle are given.



NumPy, Exercise
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Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
    * Start iterating, k=0
        * While not converged do
           * Start your i-loop (for i = 1 to n)
               * sigma = 0
                * Start your j-loop (for j = 1 to n)
                   * If j not equal to i
                       * sigma = sigma + a[i][j] * x[j][k]
                 * End j-loop
               * x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D
           * End i-loop
        * Check for convergence
    * Iterate k, ie. k = k+1

Jacobi



Threads, Multithreading, 
Processes in a Nutshell

What is a thread?
A thread is a path of execution within a process. 
A process can contain multiple threads. 

What is a process?
a process is the instance of a computer program 
that is being executed by one or many threads.
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Threads, Multithreading, 
Processes in a Nutshell

Multithreading?
A thread is also known as lightweight process. 
The idea is to achieve parallelism by dividing a 
process into multiple threads.
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The big picture
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Advantages of Multithreading
1. Responsiveness: If the process is divided into multiple threads, if one thread completes its 

execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process 

context switch. Process context switching requires more overhead from the CPU.

3. Effective utilization of multiprocessor system: If we have multiple threads in a single 

process, then we can schedule multiple threads on multiple processor. This will make process 

execution faster.
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Advantages of Multithreading
4. Resource sharing: Resources like code, data, and files can be shared among all threads 

within a process.

Note: stack and registers can’t be shared among the threads. Each thread has its own stack 

and registers.

5. Communication: Communication between multiple threads is easier, as the threads shares 

common address space. while in process we have to follow some specific communication 

technique for communication between two process.

6. Enhanced throughput of the system: If a process is divided into multiple threads, and each 

thread function is considered as one job, then the number of jobs completed per unit of time 

is increased, thus increasing the throughput of the system.
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Parallel Programming in a 
Nutshell
doing multiple things at the same time

● running code simultaneously on different CPUs
● running code on the same CPU using multiple 

threads and achieving speedups by taking 
advantage of “wasted” CPU cycles
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A note about parallelism in 
Python
the global interpreter lock is a mutex -  concurrency control, which is 
instituted for the purpose of preventing race conditions - that protects 
access to Python objects…
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Parallel Programming in a 
Nutshell
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Vectorization

43



NumPy, Vectorization
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import time
size_of_vec = 1000
def pure_python_version():
    t1 = time.time()
    X = range(size_of_vec)
    Y = range(size_of_vec)
    Z = []
    for i in range(len(X)):
        Z.append(X[i] + Y[i])
    return time.time() - t1

def numpy_version():
    t1 = time.time()
    X = np.arange(size_of_vec)
    Y = np.arange(size_of_vec)
    Z = X + Y
    return time.time() - t1



NumPy, Cooler things
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t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.



Pandas, What is it?

A software library written for the Python for data 
manipulation and analysis. In particular, it offers 
data structures and operations for manipulating 
numerical tables and time series
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Pandas, The DataFrame

The primary pandas data structure. 
Two-dimensional size-mutable, heterogeneous 
tabular data structure with labeled axes (rows and 
columns). Arithmetic operations align on both row 
and column labels. Can be thought of as a dict-like 
container for Series objects.
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Pandas, First Steps

Let's create a simple data set, and see what 
Pandas can do.
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import pandas as pd

import numpy as np

import matplotlib.pyplot as plt



Pandas, First Steps

Let's create a simple data set, and see what 
Pandas can do.
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s = pd.Series([1,3,5,np.nan,6,8])

s



Pandas, First Steps

Let's create a simple data set, and see what 
Pandas can do.
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dates = pd.date_range('20180101', periods=6)

dates



Pandas, First Steps

Let's create a simple data set, and see what 
Pandas can do.
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df = pd.DataFrame(np.random.randn(6,4), 
index=dates, columns=list('ABCD'))

df



Pandas, First Steps

Let's create a simple data set, and see what 
Pandas can do.
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df2 = pd.DataFrame({ 'A' : 1.,'B' : 
pd.Timestamp('20130102'),'C' : 
pd.Series(1,index=list(range(4)),dtype='float32'),'D' : 
np.array([3] * 4,dtype='int32'),'E' : 
pd.Categorical(["test","train","test","train"]),'F' : 
'foo' })

df2



Pandas, Viewing Data

Some common/useful functions
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df.head()

df.tail(3)

df.index

df.columns

df.values

df.describe()

df.T

df.sort_index(axis=1, ascending=False)

df.sort_values(by='B')



Pandas, Selecting Data by Label

Some common/useful functions
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df['A']

df[0:3]

df['20130102':'20130104']

df.loc[dates[0]]

df.loc[:,['A','B']]

df.loc['20130102':'20130104',['A','B']]

df.loc['20130102',['A','B']]

df.loc[dates[0],'A']



Pandas, Selecting Data by Position

Some common/useful functions
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df.iloc[3]

df.iloc[3:5,0:2]

df.iloc[[1,2,4],[0,2]]

df.iloc[1:3,:]

df.iloc[:,1:3]

df.iloc[1,1]

df.iat[1,1]



Pandas, CSV Files

manipulating CSV files.
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ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', 
periods=1000))

ts = ts.cumsum()  ## cumulative sum

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A', 
'B', 'C', 'D'])

df = df.cumsum()

df.to_csv('foo.csv')

pd.read_csv('foo.csv')



Pandas, CSV Files

filtering data made easy… return of lambda
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df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A', 
'B', 'C', 'D'])

df = df.cumsum()

df.loc[lambda df: df.B > 10]  ## What do you think this does?



Pandas, Joining

Dataset 1

58

raw_data = {
        'subject_id': ['1', '2', '3', '4', '5'],
        'first_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 
        'last_name': ['Anderson', 'Ackerman', 'Ali', 'Aoni', 'Atiches']}

df_a = pd.DataFrame(raw_data, columns = ['subject_id', 'first_name', 
'last_name'])

df_a



Pandas, Joining

Dataset 2

59

raw_data = {
        'subject_id': ['4', '5', '6', '7', '8'],
        'first_name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 
        'last_name': ['Bonder', 'Black', 'Balwner', 'Brice', 'Btisan']}

df_b = pd.DataFrame(raw_data, columns = ['subject_id', 'first_name', 
'last_name'])

df_b



Pandas, Joining

Dataset 3
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raw_data = {
        'subject_id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
        'test_id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]}

df_n = pd.DataFrame(raw_data, columns = ['subject_id','test_id'])

df_n



Pandas, Joining

Joining along rows
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df_new = pd.concat([df_a, df_b])
df_new



Pandas, Joining

Joining along columns
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d.concat([df_a, df_b], axis=1)



Pandas, Joining

Merging
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pd.merge(df_new, df_n, on='subject_id')



Pandas, Joining

Merging, Outer Join
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pd.merge(df_a, df_b, on='subject_id', how='outer')



Pandas, Joining

Merging, Inner Join
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pd.merge(df_a, df_b, on='subject_id', how='inner')



Pandas, Joining

Merging, Right Join
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pd.merge(df_a, df_b, on='subject_id', how='right')



Pandas, Joining

Merging, Left Join
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pd.merge(df_a, df_b, on='subject_id', how='left')



Pandas, Summary of Features
Pandas allow for:

 Boolean Indexing
 Statistical Operations
 Histogramming
 Merging Data
 SQL Style Joins
 SQL Style Appends
 SQL Style Grouping
 Reshaping
 Pivoting
 and more!
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PRESENTED BY:

What is Data Science
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Data Science 101

What is Data?
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Data Science 101
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Data Science 101

Data is a set of values of subjects with respect to 
qualitative or quantitative variables. Data and information or 
knowledge are often used interchangeably; however data 
becomes information when it is viewed in context or in 
post-analysis. Wikipedia
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https://en.wikipedia.org/wiki/Data


Data Science 101

Data is everywhere!

Where is your data?
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Data Science 101

What makes data important?
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Data Science 101
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Data Science 101

Data science is a multi-disciplinary field that uses scientific 
methods, processes, algorithms and systems to extract 
knowledge and insights from structured and unstructured 
data. Wikipedia
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https://en.wikipedia.org/wiki/Data_science


Data Science 101

Data Science is the ability to understand that there is a story hidden in 
the data.
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Data Science 101

100 Million Dollars - Southwest Airlines saved by reducing the time 
their airplanes sat idle on the tarmac

39 Million Gallons - the amount of fuel UPS saved by optimizing its fleet

32,000 Dollars the amount of money it costs TACC to have our 
machines sitting idle
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Data Science 101

Data is worth money.
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Data Science 101

BIG DATA

There isn't a readily available definition of Big Data because you can't  
"see it"

Examples of Big Data?

80



Data Science 101

We are in the era of Big Data

There was a road to get to this moment with a few important stops 
along the way, and it's a road on which we're probably still nowhere 
near the end. To get to the data driven world we have today, we 
needed scale, speed, and ubiquity.
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Data Science 101

Scale

Data started with the punch card

introduced by Herman Hollereith in 1890

7.34 inches wide by 3.25 inches high and approximately .07 inches 
thick, a punch card was a piece of paper or cardstock containing holes 
in specific locations that corresponded to specific meanings.
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Data Science 101
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Data Science 101

Scale

Coding up data and programs through a series of holes in a piece of 
paper can only scale so far

it was revolutionary for its day because the existence of semi autotic 
data tallying allowed for faster and more accurate computation.
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Data Science 101

Speed

the second prong of the big data revolution involves how fast we can 
move around and compute with data.
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Data Science 101

Ubiquity

Definition: the fact of appearing everywhere or of being very common.
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Data Science 101

Putting the science in data science

it's short answer to what you can do with the billions upon billions 
upon of data points being collected
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Data Science 101

The data is there.

It exists

There's something valuable in it.

But what does it mean? What's going on? What can you learn? How 
can you use it to make better science?

Data analysis is all about asking these types of questions.
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Data Science 101

Here's the catch

You have to understand how the data came to be and what the goals 
of the process are in order to do good analytic work.
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Data Science 101

Experimentation has been around for a long time.

People have been testing out new ideas for far longer than data 
science has been a thing.

Experimentation is at the heart of a lot of modern data work.
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Data Science 101

Machine Learning 

Data scientists define machine learning as the process of using 
machines to better understand a process or system, and recreate, 
replicate or augment that system.
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Data Science 101

Machine Learning, Supervised Learning 

Supervised learning is probably the most well known of the branches of 
data science.

All about predicting something you’ve seen before.

You try to analyze what the outcome of the process was in the past and 
build a system that tries to draw out what matters and build 
predictions for the next time it happens.
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Data Science 101

Machine Learning, Unsupervised Learning

You can do a lot of machine learning work without an observed 
outcome or target.

Unsupervised learning is less concerned about making predictions than 
understanding and identifying relationships or associations that might 
exist within the data.
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Data Science 101

Machine Learning, Unsupervised Learning

The K Means algorithm.

This technique, calculates the distance between different points of 
data and groups similar data together.

This The “suggested new friends” feature on Facebook
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Data Science 101

Machine Learning, Reinforcement Learning

Reinforcement learning requires an active feedback loop.

Reinforcement learning requires a dynamic dataset that interacts with 
the real world.
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Data Science 101

Artificial Intelligence

Artificial Intelligence wants some kind of human interaction and is 
intended to be somewhat human or “intelligent” in the way it carries 
out those interactions. Therefore, that interaction becomes a 
fundamental part of the product a person seeks to build. Data science 
is more about insight and building systems. It places less emphasis on 
human interaction and more on providing intelligence, 
recommendations, or insights.
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Data Science 101

In a nutshell

Data is important.

We need to understand what the data is

What the data means

To find the underlying story
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Questions? Comments?
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