
S. Charlie Dey, Director of Training and Professional Development

charlie@tacc.utexas.edu

Science in the Cloud, 2019

Power Python 101

1

mailto:charlie@tacc.utexas.edu

Agenda
● Introduction to the Jupyter Notebook
● Numpy Array vs Standard List
● Threads and Processors
● Vectorization
● Using Numpy with Threads
● Pandas
● Data Science

2

What are Jupyter Notebooks?
A web-based, interactive computing tool for
capturing the whole computation process:
developing, documenting, and executing code,
as well as communicating the results.

3

How do Jupyter Notebooks Work?
An open notebook has exactly one interactive session connected to a kernel

which will execute code sent by the user and communicate back results.
This kernel remains active if the web browser window is closed, and
reopening the same notebook from the dashboard will reconnect the web
application to the same kernel.

What's this mean?
Notebooks are an interface to kernel, the kernel executes your code and

outputs back to you through the notebook. The kernel is essentially our
programming language we wish to interface with.

4

Jupyter Notebooks, Structure
• Code Cells

 Code cells allow you to enter and run code
Run a code cell using Shift-Enter

• Markdown Cells
 Text can be added to Jupyter Notebooks using Markdown cells.
Markdown is a popular markup language that is a superset of
HTML.

5

Jupyter Notebooks, Structure
• Markdown Cells

 You can add headings:

 # Heading 1
Heading 2
Heading 2.1
Heading 2.2

 You can add lists

 1. First ordered list item
2. Another item
⋅⋅* Unordered sub-list.
1. Actual numbers don't matter, just that it's a number
⋅⋅1. Ordered sub-list
4. And another item.

6

Jupyter Notebooks, Structure
• Markdown Cells

 pure HTML
 <dl>
 <dt>Definition list</dt>
 <dd>Is something people use sometimes.</dd>

 <dt>Markdown in HTML</dt>
 <dd>Does *not* work **very** well. Use HTML tags.</dd>
</dl>

 And even, Latex!

 $e^{i\pi} + 1 = 0$

7

Jupyter Notebooks, Workflow

Typically, you will work on a computational problem in
pieces, organizing related ideas into cells and moving
forward once previous parts work correctly. This is much
more convenient for interactive exploration than breaking
up a computation into scripts that must be executed
together, as was previously necessary, especially if parts of
them take a long time to run.

8

Jupyter Notebooks, Workflow

 Let a traditional paper lab notebook be your guide:
 Each notebook keeps a historical (and dated) record of the analysis

as it’s being explored.

 The notebook is not meant to be anything other than a place for
experimentation and development.

 Notebooks can be split when they get too long.

 Notebooks can be split by topic, if it makes sense.

9

Jupyter Notebooks, Shortcuts
● Shift-Enter: run cell

● Execute the current cell, show output (if any), and jump to the next

cell below. If Shift-Enter is invoked on the last cell, a new code

cell will also be created. Note that in the notebook, typing Enter on

its own never forces execution, but rather just inserts a new line in

the current cell. Shift-Enter is equivalent to clicking the Cell |

Run menu item.

10

Jupyter Notebooks, Shortcuts
● Ctrl-Enter: run cell in-place

● Execute the current cell as if it were in “terminal mode”, where any

output is shown, but the cursor remains in the current cell. The cell’s

entire contents are selected after execution, so you can just start

typing and only the new input will be in the cell. This is convenient

for doing quick experiments in place, or for querying things like

filesystem content, without needing to create additional cells that

you may not want to be saved in the notebook.

11

Jupyter Notebooks, Shortcuts
● Alt-Enter: run cell, insert below

● Executes the current cell, shows the output, and inserts a new cell

between the current cell and the cell below (if one exists). (shortcut

for the sequence Shift-Enter,Ctrl-m a. (Ctrl-m a adds a new

cell above the current one.))

● Esc and Enter: Command mode and edit mode

● In command mode, you can easily navigate around the notebook

using keyboard shortcuts. In edit mode, you can edit text in cells.

12

Python - Variables, Refresh

13

in a code cell:
five = 5
one = 1
twodot = 2.0
print (five)
print (one + one)
message = “This is a string”
print (message)
Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types, refresh

14

integer_variable = 100
floating_point_variable = 100.0
string_variable = “Name”

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

15

Variables have a type

 You can check the type of a variable by using the type() function:
 print (type(integer_variable))

It is also possible to change the type of some basic types:

 str(int/float): converts an integer/float to a string
 int(str): converts a string to an integer
 float(str): converts a string to a float

Be careful: you can only convert data that actually makes sense to be
transformed

Python - lists

16

 A list is a sequence, where each element is assigned a position (index)
 First position is 0. You can access each position using []
 Elements in the list can be of different type

mylist1 = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]
mylist3 = [“first”, “second”, 3]
print(mylist1[0], mylist1[1])
print(mylist2[0])
print(mylist3)
print(mylist3[0], mylist3[1], mylist3[2])
print(mylist2[0] + mylist3[2])

Python - lists

17

 It’s possible to use slicing:
 print(mylist3[0:3])
 print(mylist3)

 To change the value of an element in a list, simply assign it a new value:
 mylist3[0] = 10
 print(mylist3)

Python - lists

18

 There’s a function that returns the number of elements in a list
 len(mylist2)

 Check if a value exists in a list:
 1 in mylist2

 Delete an element
 len(mylist2)
 del mylist2[0]
 print(mylist2)

 Iterate over the elements of a list:

 for x in mylist2:
 print(x)

Python - lists

19

 There are more functions
 max(mylist), min(mylist)

 It’s possible to add new elements to a list:

 my_list.append(new_item)

 We know how to find if an element exists, there’s a way to return the

position of that element:
 my_list.index(item)

 Or how many times a given item appears in the list:

 my_list.count(item)

Python - Anonymous Functions

20

type the following into a cell:

x = lamda a: a * 10

print (x(10))

Python - Anonymous Functions

21

try the following definition:
def myfunc(x):

 return lambda a: a*x

y = myfunc(10)

print (y(5))

z = myfunc(100)

print (z(5))

Python - NumPy

22

"Numerical Python"

 open source extension module for Python
 provides fast precompiled functions for

mathematical and numerical routines
 adds powerful data structures for efficient

computation of multi-dimensional arrays and
matrices.

NumPy, First Steps

Numpy gives us the array

23

import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)

NumPy, First Steps

And gives us an easier way to perform some
simple math on them

vs.

24

print(C * 9 / 5 + 32)

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

NumPy, Multi-Dimension Arrays

25

A = np.array([[3.4, 8.7, 9.9],
 [1.1, -7.8, -0.7],
 [4.1, 12.3, 4.8]])
print(A)
print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B)
print(B.ndim)

NumPy, Multi-Dimension Arrays

26

x = np.array([[67, 63, 87],
 [77, 69, 59],
 [85, 87, 99],
 [79, 72, 71],
 [63, 89, 93],
 [68, 92, 78]])
print(np.shape(x))

The shape function:

NumPy, Multi-Dimension Arrays

27

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:

NumPy, Multi-Dimension Arrays

28

x = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B.shape)

A couple more examples of shape:

NumPy, Multi-Dimension Arrays

29

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index 0

print(F[0])

print the last element of F

print(F[-1])

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B[0][1][0])

indexing:

NumPy, Multi-Dimension Arrays

30

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:

NumPy, Multi-Dimension Arrays

31

np.identity(4)

function to create an identity array

NumPy, By Example

32

 def TimeStep(self, dt=0.0):
 """Takes a time step using straight forward Python loops."""
 g = self.grid
 nx, ny = g.u.shape
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 err = 0.0
 for i in range(1, nx-1):
 for j in range(1, ny-1):
 tmp = u[i,j]
 u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
 (u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
 diff = u[i,j] - tmp
 err += diff*diff
 return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example

33

def numericTimeStep(self, dt=0.0):
 """Takes a time step using a NumPy expression."""
 g = self.grid
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 g.old_u = u.copy() # needed to compute the error.

 # The actual iteration
 u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
 (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

 return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, Exercise

34

Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
 * Start iterating, k=0
 * While not converged do
 * Start your i-loop (for i = 1 to n)
 * sigma = 0
 * Start your j-loop (for j = 1 to n)
 * If j not equal to i
 * sigma = sigma + a[i][j] * x[j][k]
 * End j-loop
 * x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D
 * End i-loop
 * Check for convergence
 * Iterate k, ie. k = k+1

Jacobi

Threads, Multithreading,
Processes in a Nutshell

What is a thread?
A thread is a path of execution within a process.
A process can contain multiple threads.

What is a process?
a process is the instance of a computer program
that is being executed by one or many threads.

35

Threads, Multithreading,
Processes in a Nutshell

Multithreading?
A thread is also known as lightweight process.
The idea is to achieve parallelism by dividing a
process into multiple threads.

36

The big picture

37

Advantages of Multithreading
1. Responsiveness: If the process is divided into multiple threads, if one thread completes its

execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process

context switch. Process context switching requires more overhead from the CPU.

3. Effective utilization of multiprocessor system: If we have multiple threads in a single

process, then we can schedule multiple threads on multiple processor. This will make process

execution faster.

38

Advantages of Multithreading
4. Resource sharing: Resources like code, data, and files can be shared among all threads

within a process.

Note: stack and registers can’t be shared among the threads. Each thread has its own stack

and registers.

5. Communication: Communication between multiple threads is easier, as the threads shares

common address space. while in process we have to follow some specific communication

technique for communication between two process.

6. Enhanced throughput of the system: If a process is divided into multiple threads, and each

thread function is considered as one job, then the number of jobs completed per unit of time

is increased, thus increasing the throughput of the system.
39

Parallel Programming in a
Nutshell
doing multiple things at the same time

● running code simultaneously on different CPUs
● running code on the same CPU using multiple

threads and achieving speedups by taking
advantage of “wasted” CPU cycles

40

A note about parallelism in
Python
the global interpreter lock is a mutex - concurrency control, which is
instituted for the purpose of preventing race conditions - that protects
access to Python objects…

41

Parallel Programming in a
Nutshell

42

Vectorization

43

NumPy, Vectorization

44

import time
size_of_vec = 1000
def pure_python_version():
 t1 = time.time()
 X = range(size_of_vec)
 Y = range(size_of_vec)
 Z = []
 for i in range(len(X)):
 Z.append(X[i] + Y[i])
 return time.time() - t1

def numpy_version():
 t1 = time.time()
 X = np.arange(size_of_vec)
 Y = np.arange(size_of_vec)
 Z = X + Y
 return time.time() - t1

NumPy, Cooler things

45

t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.

Pandas, What is it?

A software library written for the Python for data
manipulation and analysis. In particular, it offers
data structures and operations for manipulating
numerical tables and time series

46

Pandas, The DataFrame

The primary pandas data structure.
Two-dimensional size-mutable, heterogeneous
tabular data structure with labeled axes (rows and
columns). Arithmetic operations align on both row
and column labels. Can be thought of as a dict-like
container for Series objects.

47

Pandas, First Steps

Let's create a simple data set, and see what
Pandas can do.

48

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Pandas, First Steps

Let's create a simple data set, and see what
Pandas can do.

49

s = pd.Series([1,3,5,np.nan,6,8])

s

Pandas, First Steps

Let's create a simple data set, and see what
Pandas can do.

50

dates = pd.date_range('20180101', periods=6)

dates

Pandas, First Steps

Let's create a simple data set, and see what
Pandas can do.

51

df = pd.DataFrame(np.random.randn(6,4),
index=dates, columns=list('ABCD'))

df

Pandas, First Steps

Let's create a simple data set, and see what
Pandas can do.

52

df2 = pd.DataFrame({ 'A' : 1.,'B' :
pd.Timestamp('20130102'),'C' :
pd.Series(1,index=list(range(4)),dtype='float32'),'D' :
np.array([3] * 4,dtype='int32'),'E' :
pd.Categorical(["test","train","test","train"]),'F' :
'foo' })

df2

Pandas, Viewing Data

Some common/useful functions

53

df.head()

df.tail(3)

df.index

df.columns

df.values

df.describe()

df.T

df.sort_index(axis=1, ascending=False)

df.sort_values(by='B')

Pandas, Selecting Data by Label

Some common/useful functions

54

df['A']

df[0:3]

df['20130102':'20130104']

df.loc[dates[0]]

df.loc[:,['A','B']]

df.loc['20130102':'20130104',['A','B']]

df.loc['20130102',['A','B']]

df.loc[dates[0],'A']

Pandas, Selecting Data by Position

Some common/useful functions

55

df.iloc[3]

df.iloc[3:5,0:2]

df.iloc[[1,2,4],[0,2]]

df.iloc[1:3,:]

df.iloc[:,1:3]

df.iloc[1,1]

df.iat[1,1]

Pandas, CSV Files

manipulating CSV files.

56

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
periods=1000))

ts = ts.cumsum() ## cumulative sum

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A',
'B', 'C', 'D'])

df = df.cumsum()

df.to_csv('foo.csv')

pd.read_csv('foo.csv')

Pandas, CSV Files

filtering data made easy… return of lambda

57

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,columns=['A',
'B', 'C', 'D'])

df = df.cumsum()

df.loc[lambda df: df.B > 10] ## What do you think this does?

Pandas, Joining

Dataset 1

58

raw_data = {
 'subject_id': ['1', '2', '3', '4', '5'],
 'first_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
 'last_name': ['Anderson', 'Ackerman', 'Ali', 'Aoni', 'Atiches']}

df_a = pd.DataFrame(raw_data, columns = ['subject_id', 'first_name',
'last_name'])

df_a

Pandas, Joining

Dataset 2

59

raw_data = {
 'subject_id': ['4', '5', '6', '7', '8'],
 'first_name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
 'last_name': ['Bonder', 'Black', 'Balwner', 'Brice', 'Btisan']}

df_b = pd.DataFrame(raw_data, columns = ['subject_id', 'first_name',
'last_name'])

df_b

Pandas, Joining

Dataset 3

60

raw_data = {
 'subject_id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
 'test_id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]}

df_n = pd.DataFrame(raw_data, columns = ['subject_id','test_id'])

df_n

Pandas, Joining

Joining along rows

61

df_new = pd.concat([df_a, df_b])
df_new

Pandas, Joining

Joining along columns

62

d.concat([df_a, df_b], axis=1)

Pandas, Joining

Merging

63

pd.merge(df_new, df_n, on='subject_id')

Pandas, Joining

Merging, Outer Join

64

pd.merge(df_a, df_b, on='subject_id', how='outer')

Pandas, Joining

Merging, Inner Join

65

pd.merge(df_a, df_b, on='subject_id', how='inner')

Pandas, Joining

Merging, Right Join

66

pd.merge(df_a, df_b, on='subject_id', how='right')

Pandas, Joining

Merging, Left Join

67

pd.merge(df_a, df_b, on='subject_id', how='left')

Pandas, Summary of Features
Pandas allow for:

 Boolean Indexing
 Statistical Operations
 Histogramming
 Merging Data
 SQL Style Joins
 SQL Style Appends
 SQL Style Grouping
 Reshaping
 Pivoting
 and more!

68

PRESENTED BY:

What is Data Science

69

Data Science 101

What is Data?

70

Data Science 101

71

Data Science 101

Data is a set of values of subjects with respect to
qualitative or quantitative variables. Data and information or
knowledge are often used interchangeably; however data
becomes information when it is viewed in context or in
post-analysis. Wikipedia

72

https://en.wikipedia.org/wiki/Data

Data Science 101

Data is everywhere!

Where is your data?

73

Data Science 101

What makes data important?

74

Data Science 101

75

Data Science 101

Data science is a multi-disciplinary field that uses scientific
methods, processes, algorithms and systems to extract
knowledge and insights from structured and unstructured
data. Wikipedia

76

https://en.wikipedia.org/wiki/Data_science

Data Science 101

Data Science is the ability to understand that there is a story hidden in
the data.

77

Data Science 101

100 Million Dollars - Southwest Airlines saved by reducing the time
their airplanes sat idle on the tarmac

39 Million Gallons - the amount of fuel UPS saved by optimizing its fleet

32,000 Dollars the amount of money it costs TACC to have our
machines sitting idle

78

Data Science 101

Data is worth money.

79

Data Science 101

BIG DATA

There isn't a readily available definition of Big Data because you can't
"see it"

Examples of Big Data?

80

Data Science 101

We are in the era of Big Data

There was a road to get to this moment with a few important stops
along the way, and it's a road on which we're probably still nowhere
near the end. To get to the data driven world we have today, we
needed scale, speed, and ubiquity.

81

Data Science 101

Scale

Data started with the punch card

introduced by Herman Hollereith in 1890

7.34 inches wide by 3.25 inches high and approximately .07 inches
thick, a punch card was a piece of paper or cardstock containing holes
in specific locations that corresponded to specific meanings.

82

Data Science 101

83

Data Science 101

Scale

Coding up data and programs through a series of holes in a piece of
paper can only scale so far

it was revolutionary for its day because the existence of semi autotic
data tallying allowed for faster and more accurate computation.

84

Data Science 101

Speed

the second prong of the big data revolution involves how fast we can
move around and compute with data.

85

Data Science 101

Ubiquity

Definition: the fact of appearing everywhere or of being very common.

86

Data Science 101

Putting the science in data science

it's short answer to what you can do with the billions upon billions
upon of data points being collected

87

Data Science 101

The data is there.

It exists

There's something valuable in it.

But what does it mean? What's going on? What can you learn? How
can you use it to make better science?

Data analysis is all about asking these types of questions.

88

Data Science 101

Here's the catch

You have to understand how the data came to be and what the goals
of the process are in order to do good analytic work.

89

Data Science 101

Experimentation has been around for a long time.

People have been testing out new ideas for far longer than data
science has been a thing.

Experimentation is at the heart of a lot of modern data work.

90

Data Science 101

Machine Learning

Data scientists define machine learning as the process of using
machines to better understand a process or system, and recreate,
replicate or augment that system.

91

Data Science 101

Machine Learning, Supervised Learning

Supervised learning is probably the most well known of the branches of
data science.

All about predicting something you’ve seen before.

You try to analyze what the outcome of the process was in the past and
build a system that tries to draw out what matters and build
predictions for the next time it happens.

92

Data Science 101

Machine Learning, Unsupervised Learning

You can do a lot of machine learning work without an observed
outcome or target.

Unsupervised learning is less concerned about making predictions than
understanding and identifying relationships or associations that might
exist within the data.

93

Data Science 101

Machine Learning, Unsupervised Learning

The K Means algorithm.

This technique, calculates the distance between different points of
data and groups similar data together.

This The “suggested new friends” feature on Facebook

94

Data Science 101

Machine Learning, Reinforcement Learning

Reinforcement learning requires an active feedback loop.

Reinforcement learning requires a dynamic dataset that interacts with
the real world.

95

Data Science 101

Artificial Intelligence

Artificial Intelligence wants some kind of human interaction and is
intended to be somewhat human or “intelligent” in the way it carries
out those interactions. Therefore, that interaction becomes a
fundamental part of the product a person seeks to build. Data science
is more about insight and building systems. It places less emphasis on
human interaction and more on providing intelligence,
recommendations, or insights.

96

Data Science 101

In a nutshell

Data is important.

We need to understand what the data is

What the data means

To find the underlying story

97

Questions? Comments?

98

