
S. Charlie Dey, Director of Training and Professional Development

Science in the Cloud, 2019

Python 101/201

1

Agenda
● Introduction to the Jupyter Notebook
● Welcome to Python
● Linear Algebra refresh
● Using Numpy

2

What are Jupyter Notebooks?
A web-based, interactive computing tool for
capturing the whole computation process:
developing, documenting, and executing code,
as well as communicating the results.

3

How do Jupyter Notebooks Work?
An open notebook has exactly one interactive session connected to a kernel

which will execute code sent by the user and communicate back results.
This kernel remains active if the web browser window is closed, and
reopening the same notebook from the dashboard will reconnect the web
application to the same kernel.

What's this mean?
Notebooks are an interface to kernel, the kernel executes your code and

outputs back to you through the notebook. The kernel is essentially our
programming language we wish to interface with.

4

Jupyter Notebooks, Structure
• Code Cells

 Code cells allow you to enter and run code
Run a code cell using Shift-Enter

• Markdown Cells
 Text can be added to Jupyter Notebooks using Markdown cells.
Markdown is a popular markup language that is a superset of
HTML.

5

Jupyter Notebooks, Structure
• Markdown Cells

 You can add headings:

 # Heading 1
Heading 2
Heading 2.1
Heading 2.2

 You can add lists

 1. First ordered list item
2. Another item
⋅⋅* Unordered sub-list.
1. Actual numbers don't matter, just that it's a number
⋅⋅1. Ordered sub-list
4. And another item.

6

Jupyter Notebooks, Structure
• Markdown Cells

 pure HTML
 <dl>
 <dt>Definition list</dt>
 <dd>Is something people use sometimes.</dd>

 <dt>Markdown in HTML</dt>
 <dd>Does *not* work **very** well. Use HTML tags.</dd>
</dl>

 And even, Latex!

 $e^{i\pi} + 1 = 0$

7

Jupyter Notebooks, Workflow

Typically, you will work on a computational problem in
pieces, organizing related ideas into cells and moving
forward once previous parts work correctly. This is much
more convenient for interactive exploration than breaking
up a computation into scripts that must be executed
together, as was previously necessary, especially if parts of
them take a long time to run.

8

Jupyter Notebooks, Workflow

 Let a traditional paper lab notebook be your guide:
 Each notebook keeps a historical (and dated) record of the analysis

as it’s being explored.

 The notebook is not meant to be anything other than a place for
experimentation and development.

 Notebooks can be split when they get too long.

 Notebooks can be split by topic, if it makes sense.

9

Jupyter Notebooks, Shortcuts
● Shift-Enter: run cell

● Execute the current cell, show output (if any), and jump to the next

cell below. If Shift-Enter is invoked on the last cell, a new code

cell will also be created. Note that in the notebook, typing Enter on

its own never forces execution, but rather just inserts a new line in

the current cell. Shift-Enter is equivalent to clicking the Cell |

Run menu item.

10

Jupyter Notebooks, Shortcuts
● Ctrl-Enter: run cell in-place

● Execute the current cell as if it were in “terminal mode”, where any

output is shown, but the cursor remains in the current cell. The cell’s

entire contents are selected after execution, so you can just start

typing and only the new input will be in the cell. This is convenient

for doing quick experiments in place, or for querying things like

filesystem content, without needing to create additional cells that

you may not want to be saved in the notebook.

11

Jupyter Notebooks, Shortcuts
● Alt-Enter: run cell, insert below

● Executes the current cell, shows the output, and inserts a new cell

between the current cell and the cell below (if one exists). (shortcut

for the sequence Shift-Enter,Ctrl-m a. (Ctrl-m a adds a new

cell above the current one.))

● Esc and Enter: Command mode and edit mode

● In command mode, you can easily navigate around the notebook

using keyboard shortcuts. In edit mode, you can edit text in cells.

12

Introduction to Python

 Hello World!
 Data types
 Variables
 Arithmetic operations
 Relational operations
 Input/Output
 Control Flow

13

Do not forget:

Indentation matters!

Python

print(“Hello World!”)

14

Let's type that line of code into a Code Cell, and hit Shift-Enter:

Hello World!

Python

print(5)

print(1+1)

15

Let's add the above into another Code Cell, and hit Shift-Enter

5

2

Python - Variables

16

 You will need to store data into variables
 You can use those variables later on
 You can perform operations with those variables
 Variables are declared with a name, followed by ‘=‘ and a value

 An integer, string,…
 When declaring a variable, capitalization is important:

‘A’ <> ‘a’

Python - Variables

17

in a code cell:
five = 5
one = 1
twodot = 2.0
print (five)
print (one + one)
message = “This is a string”
print (message)
Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

18

in a code cell:
integer_variable = 100
floating_point_variable = 100.0
string_variable = “Name”

Notice: We're not "typing" our variables, we're just setting them and allowing Python to type
them for us.

Python - Data Types

19

Variables have a type

 You can check the type of a variable by using the type() function:
 print (type(integer_variable))

It is also possible to change the type of some basic types:

 str(int/float): converts an integer/float to a string
 int(str): converts a string to an integer
 float(str): converts a string to a float

Be careful: you can only convert data that actually makes sense to be
transformed

Python - Arithmetic Operations

20

+ Addition 1 + 1 = 2

- Subtraction 5 – 3 = 2

/ Division 4 / 2 = 2

% Modulo 5 % 2 = 1

* Multiplication 5 * 2 = 10

// Floor division 5 // 2 = 2

** To the power of 2 ** 3 = 8

Python - Arithmetic Operations

21

Some experiments:

print (5/2)
print (5.0/2)
print ("hello" + "world")
print ("some" + 1)
print ("number" * 5)
print (3+5*2)

Python - Arithmetic Operations

22

Some more experiments:

number1 = 5.0/2
number2 = 5/2

what type() are they?
type(number1)
type(number2)

now, convert number2 to an integer:
int(number2)

Python - Reading from the Keyboard

23

Let put the following into a new Code Cell:

numIn = input("Please enter a number: ")

Let's run this cell!

Python - Reading from the Keyboard

24

Let put the following into a new Code Cell:

stringIn = input("Please enter a string: ")

Let's run this cell!

put the word Hello as your input.

What happened?

Python - Making the output prettier

25

Let put the following into a new Code Cell:

print ("The number that you wrote was : ", numIn)
print ("The number that you wrote was : %d" % numIn)

print ("the string you entered was: ", stringIn)
print ("the string you entered was: %s" % stringIn)

print (" your string: %s\n your number: %d", %(numIn, stringIn))

for floating points, use %f

Want to make it prettier?

\n for a new line

\t to insert a tab

Python - Writing to a File

26

Let put the following into a new Code Cell:

my_file = open("output_file.txt",'w')
var1 = "This is a string\n"
my_file.write(vars)
var2 = 10
my_file.write("\n")
my_file.write(str(var2))
var3 = 20.0
my_file.write("\n")
my_file.write(str(var3))
my_file.close()

Python - Reading from a File

27

When opening a file, you need to decide “how” you want to open it:

Just read?

Are you going to write to the file?

If the file already exists, what do you want to do with it?

r read only (default)
w write mode: file will be overwritten if it already exists
a append mode: data will be appended to the existing file

Python - Reading from a File

28

Let's read from the file we created in the previous cell.

my_file = open(“output_file.txt”,’r’)
content = my_file.read()
print(content)
my_file.close()

Python - Reading from a File

29

Let's read it line by line

my_file = open("output_file.txt",'r')
var1 = my_file.readline()
var2 = my_file.readline()
var3 = my_file.readline()
var4 = my_file.readline()
print("String: ", var1)
print(“Blank: “, var2)
print("Integer: ", var3)
print("Float: ", var4)
my_file.close()

Python - Reading from a File

30

Tweak it a bit to make the code easier to read… introducing 'with'!

‘with’ will very nicely close your file for you

(Note the indentation!!)

with open("output_file.txt",'r') as f:
 var5 = f.readline()
 var6 = f.readline()
 var7 = f.readline()

var 8 = f.readline()
 print("String: ", var5)

print(“Blank: “, var6)
 print("Integer: ", var7)
 print("Float: ", var8)

Python - Control Flow

31

 So far we have been writing instruction after instruction where every

instruction is executed

 What happens if we want to have instructions that are only executed if a

given condition is true?

Python - if/else/elif

32

Let's look at some example of booleans.

type the following into a code cell

a = 2
b = 5

print (a>b)
print (a<b)
print (a == b)
print (a != b)
print (b>a or a==b)
print (b<a and a==b)

Python - if/else/elif

33

The if/else construction allows you to define conditions in your program

(Don’t forget your indentation!!)

 if conditionA:
 statementA
 elif conditionB:
 statementB
 else:
 statementD
 this line will always be executed (after the if/else)

Python - if/else/elif

34

The if/else construction allows you to define conditions in your program

(Indentation is IMPORTANT!)

 if conditionA:
 statementA
 elif conditionB:
 statementB
 else:
 statementD
 this line will always be executed (after the if/else)

conditions are a datatype known as booleans, they can only be true or false

Python - if/else/elif

35

A simple example

simple_input = input(“Please enter a number: “)
if (int(simple_input)>10):
 print ("You entered a number greater than 10")
else:
 print ("you entered a number less than 10")

Python - if/else/elif

36

You can also nest if statements together:

if (condition1):
 statement1
 if (condition2):
 statement2
 else:
 if (condition3):
 statement3 # when is this statement executed?
else: # which ‘if’ does this ‘else’ belong to?
 statement4 # when is this statement executed?

Exercise:
enter a number from the keyboard into a variable.

using type casting and if statements, determine if
the number is even or odd

Python - For Loops

38

When we need to iterate, execute the same set of instructions over and over

again… we need to loop! and introducing range()

(Indentation is IMPORTANT!)

for x in range(0, 3):
 print ("Let's go %d" % x)

Python - For Loops, nested loops

39

When we need to iterate, execute the same set of instructions over and over

again… we need to loop! and introducing range()

for x in range(0, 3):
 for y in range(0,5):
 print ("Let's go %d %d" % (x,y))

Exercise:
using nested for-loops and nested if statements,
write a program that loops from 3 to 1000 and
print out the number if it is a prime number.

Exercise:
using a for loop, find the triples that satisfies:

 a*a + b*b = c*c

where

 0 < a < 100
 0 < b < 100

Python - While Loops

42

Sometimes we need to loop while a condition is true...

(remember to indent!)

i = 0 # Initialization
while (i < 10): # Condition
 print (i) # do_something
 i = i + 1 # Why do we need this?

Exercise:
using a while loop, find the prime numbers less
than 1000

Python - lists

44

 A list is a sequence, where each element is assigned a position (index)
 First position is 0. You can access each position using []
 Elements in the list can be of different type

mylist1 = [“first item”, “second item”]
mylist2 = [1, 2, 3, 4]
mylist3 = [“first”, “second”, 3]
print(mylist1[0], mylist1[1])
print(mylist2[0])
print(mylist3)
print(mylist3[0], mylist3[1], mylist3[2])
print(mylist2[0] + mylist3[2])

Python - lists

45

 It’s possible to use slicing:
 print(mylist3[0:3])
 print(mylist3)

 To change the value of an element in a list, simply assign it a new value:
 mylist3[0] = 10
 print(mylist3)

Python - lists

46

 There’s a function that returns the number of elements in a list
 len(mylist2)

 Check if a value exists in a list:
 1 in mylist2

 Delete an element
 len(mylist2)
 del mylist2[0]
 print(mylist2)

 Iterate over the elements of a list:

 for x in mylist2:
 print(x)

Python - lists

47

 There are more functions
 max(mylist), min(mylist)

 It’s possible to add new elements to a list:

 my_list.append(new_item)

 We know how to find if an element exists, there’s a way to return the

position of that element:
 my_list.index(item)

 Or how many times a given item appears in the list:

 my_list.count(item)

Exercise:
create a 3 lists:

one list, x, holding numbers going from 0 to 100

one list, y1, holding x*x

one list, y2, holding x*x*x

write these out to a file with the format:

x, y1, y2

Python - user defined functions

49

 User-defined functions are reusable code blocks; they only need to be
written once, then they can be used multiple times. They can even be
used in other applications, too.

 These functions are very useful, from writing common utilities to specific
business logic. These functions can also be modified per requirement.

 The code is usually well organized, easy to maintain, and
developer-friendly.

 As user-defined functions can be written independently, the tasks of a
project can be distributed for rapid application development.

 A well-defined and thoughtfully written user-defined function can ease
the application development process.

Python - user defined functions

50

Step 1: Declare the function with the keyword def followed by the function
name.

Step 2: Write the arguments inside the opening and closing parentheses of the
function, and end the declaration with a colon.

Step 3: Add the program statements to be executed.

Step 4: End the function with/without return statement.

Python - user defined functions

51

def userDefFunction (arg1, arg2, arg3
...):
 program statement1
 program statement3
 program statement3

 return;

Exercise:
write a user defined function that accepts an
integer as an argument then prints out that many
number of prime numbers

Exercise:
write a user defined function that accepts an
integer as a parameter then returns the next
prime number.

Exercise:
A prime gap is the difference between two successive prime numbers. The
n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-th
and the n-th prime numbers

 Write a program that uses your prime number generator functions and print
out the first set of prime numbers where the prime gap is greater than 13

Python - Anonymous Functions

55

type the following into a cell:

x = lamda a: a * 10

print (x(10))

Python - Anonymous Functions

56

try the following definition:
def myfunc(x):

 return lambda a: a*x

y = myfunc(10)

print (y(5))

z = myfunc(100)

print (z(5))

Questions? Comments?

57

Monte Carlo
Pi

Sequential Algorithm
A Monte Carlo algorithm for approximating π

uniformly generates the points in the square [-1, 1] x
[-1, 1]. Then it counts the points which lie in the
inside of the unit circle.

Sequential Algorithm
A Monte Carlo algorithm for approximating π uniformly
generates the points in the square [-1, 1] x [-1, 1]. Then it
counts the points which lie in the inside of the unit circle.

Sequential Algorithm
An approximation of π is then computed by the

following formula:

Algorithm
double approximatePi(int numSamples)
{
 float x, y;
 int counter = 0;
 for (int s = 0; s != numSamples; s++)
 {
 x = random number between -1, 1;
 y = random number between -1, 1;

 if (x * x + y * y < 1)
 {
 counter++;
 }
 }

 return 4.0 * counter / numSamples;
}

Let's code this in Python, Google to see what command in Python
produces a random number

Linear Algebra
Applications

● Matrices in Engineering, such as a line of springs.

● Graphs and Networks, such as analyzing networks.

● Markov Matrices, Population, and Economics, such as population growth.

● Linear Programming, the simplex optimization method.

● Fourier Series: Linear Algebra for functions, used widely in signal processing.

● Linear Algebra for statistics and probability, such as least squares for regression.

● Computer Graphics, such as the various translation, rescaling and rotation of images.

63

Linear Algebra
 Linear algebra is about linear combinations.

 Using math on columns of numbers called
vectors and arrays of numbers called matrices
to create new columns and arrays of numbers.

 Linear algebra is the study of lines and planes,
vector spaces and mappings that are required
for linear transforms.

64

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:

y = 4 * x + 1

describes a line on a two-dimensional graph

65

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:

y = 0.1 * x1 + 0.4 * x2
y = 0.3 * x1 + 0.9 * x2

 line up a system of equations with the same form with two or more unknowns

66

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following:

1 = 0.1 * x1 + 0.4 * x2
3 = 0.3 * x1 + 0.9 * x2

 line up a system of equations with the same form with two or more unknowns

67

Linear Algebra
Linear algebra is the mathematics of data.
Matrices and vectors are the language of data.

Let's look at the following, Ax = b :

5 = 0.1 * x1 + 0.4 * x2 + x3
10 = 0.3 * x1 + 0.9 * x2 + 2.0 * x3
3 = 0.2 * x1 + 0.3 * x2 - .5 * x3

 ls there a x1, x2, x3 that solves this system?

68

Linear Algebra
Gaussian Elimination

The goals of Gaussian elimination are to make the upper-left corner element a 1

use elementary row operations to get 0s in all positions underneath that first 1

get 1s for leading coefficients in every row diagonally from the upper-left to lower-right corner,

and get 0s beneath all leading coefficients.

you eliminate all variables in the last row except for one, all variables except for two in the

equation above that one, and so on and so forth to the top equation, which has all the

variables. Then use back substitution to solve for one variable at a time by plugging the values

you know into the equations from the bottom up..

69

● You can multiply any row by a constant (other than zero).

●

● You can switch any two rows.

●

● You can add two rows together.

●

Linear Algebra
Gaussian Elimination, Rules

70

Linear Algebra

71

Transpose

A defined matrix can be transposed, which creates a new matrix with the

number of columns and rows flipped.

This is denoted by the superscript “T” next to the matrix.

An invisible diagonal line can be drawn through the matrix from top left to

bottom right on which the matrix can be flipped to give the transpose.

Linear Algebra

72

Inversion

Matrix inversion is a process that finds another matrix that when multiplied

with the matrix, results in an identity matrix.

Given a matrix A, find matrix B, such that AB or BA = In.

The operation of inverting a matrix is indicated by a -1 superscript next to

the matrix; for example, A^-1. The result of the operation is referred to as

the inverse of the original matrix; for example, B is the inverse of A.

Linear Algebra

73

Trace

A trace of a square matrix is the sum of the values on the main

diagonal of the matrix (top-left to bottom-right).

Linear Algebra

74

Determinant

The determinant of a square matrix is a scalar representation of the

volume of the matrix.

The determinant describes the relative geometry of the vectors that

make up the rows of the matrix. More specifically, the determinant

of a matrix A tells you the volume of a box with sides given by rows

of A.

— Page 119, No Bullshit Guide To Linear Algebra, 2017

http://amzn.to/2k76D4C

Linear Algebra

75

Matrix Rank

The rank of a matrix is the estimate of the number of linearly

independent rows or columns in a matrix.

Linear Algebra - Matrix Arithmetic

76

Matrix Addition

Two matrices with the same dimensions can be added together to

create a new third matrix.

C = A + BC[0,0] = A[0,0] + B[0,0]

C[1,0] = A[1,0] + B[1,0]
C[2,0] = A[2,0] + B[2,0]
C[0,1] = A[0,1] + B[0,1]
C[1,1] = A[1,1] + B[1,1]
C[2,1] = A[2,1] + B[2,1]

Linear Algebra - Matrix Arithmetic

77

Matrix Subtraction

Similarly, one matrix can be subtracted from another matrix with the same

dimensions.

C = A - B

C[0,0] = A[0,0] - B[0,0]
C[1,0] = A[1,0] - B[1,0]
C[2,0] = A[2,0] - B[2,0]
C[0,1] = A[0,1] - B[0,1]
C[1,1] = A[1,1] - B[1,1]
C[2,1] = A[2,1] - B[2,1]

Linear Algebra - Matrix Arithmetic

78

Matrix Multiplication (Hadamard Product)

Two matrices with the same size can be multiplied together, and this is often called

element-wise matrix multiplication or the Hadamard product.

It is not the typical operation meant when referring to matrix multiplication, therefore a different

operator is often used, such as a circle “o”.

C = A o B
C[0,0] = A[0,0] * B[0,0]
C[1,0] = A[1,0] * B[1,0]
C[2,0] = A[2,0] * B[2,0]
C[0,1] = A[0,1] * B[0,1]
C[1,1] = A[1,1] * B[1,1]
C[2,1] = A[2,1] * B[2,1]

Linear Algebra - Matrix Arithmetic

79

Matrix Division

One matrix can be divided by another matrix with the same

dimensions.

C = A / B
C[0,0] = A[0,0] / B[0,0]
C[1,0] = A[1,0] / B[1,0]
C[2,0] = A[2,0] / B[2,0]
C[0,1] = A[0,1] / B[0,1]
C[1,1] = A[1,1] / B[1,1]
C[2,1] = A[2,1] / B[2,1]

Linear Algebra - Matrix Arithmetic

80

Matrix-Matrix Multiplication (Dot Product)

Matrix multiplication, also called the matrix dot product is more complicated than the previous

operations and involves a rule as not all matrices can be multiplied together.

One of the most important operations involving matrices is multiplication of two

matrices. The matrix product of matrices A and B is a third matrix C. In order for this

product to be defined, A must have the same number of columns as B has rows. If A is

of shape m × n and B is of shape n × p, then C is of shape m × p.

— Page 34, Deep Learning, 2016.

http://amzn.to/2B3MsuU

Linear Algebra - Matrix Arithmetic

81

Matrix-Matrix Multiplication (Dot Product)

 a11, a12
A = a21, a22
 a31, a32

 b11, b12
B = b21, b22

 a11 * b11 + a12 * b21, a11 * b12 + a12 * b22
C = a21 * b11 + a22 * b21, a21 * b12 + a22 * b22
 a31 * b11 + a32 * b21, a31 * b12 + a32 * b22

Numerical Linear Algebra, Two Different
Approaches

• Solve Ax = b

• Direct methods:

– Deterministic

– Exact up to machine precision

– Expensive (in time and space)

• Iterative methods:

– Only approximate

– Cheaper in space and (possibly) time

– Convergence not guaranteed

Iterative Methods
Choose any x

0
 and repeat

until

 or until

Example of Iterative Solution

Example system

with solution (2,1,1)

Suppose you know (physics) that solution components are roughly the same size, and
observe the dominant size of the diagonal, then

might be a good approximation: solution (2.1, 9/7, 8/6)

Iterative Example
Example system

with solution (2,1,1)
Also easy to solve:

with solution (2.1, 7.95/7, 5.9/6)

Iterative Example
• Instead of solving we solved

• Look for the missing part: , then

• Solve again and update .

• Two decimals per iteration. This is not typical

• Exact system solving: O(n3) cost; iteration: O(n2) per iteration. Potentially cheaper
if the number of iterations is low.

Abstract Presentation
• To solve Ax = b; too expensive; suppose K ≈ A and solving Kx = b is

possible

• Define Kx
0
 = b, then error correction x

0
 = x + e

0
, and A(x

0
 - e

0
) = b

• so Ae
0
 = Ax

0
 - b = r

0
; this is again unsolvable, so

• Kẽ
0
 and x

1
 = x

0
 - ẽ

0

• Now iterate: e
1
 = x

1
 - x, Ae

1
 = Ax

1
 - b = r

1
 et cetera

Error Analysis
• One step

• Inductively:

• Geometric reduction (or amplification!)

• This is 'stationary iteration': every iteration step the same. Simple analysis, limited
applicability

Computationally
If A = K -N

then Ax = b ⟹ Kx = Nx + b ⟹ Kx
i+1

 = Nx
i
 + b

(because Kx = Nx +b is a "fixed point" of an iteration)

Equivalent to the above, and you don't actually need to form the
residual

Choice of K
• The closer K is to A, the faster the convergence

• Diagonal and lower triangular choice mentioned above: let A = D
A
 + L

A
 + U

A

be a splitting into diagonal, lower triangular, upper triangular part, then

• Jacobi method: K = D
A
 (diagonal part),

• Gauss-Seidel method: K = D
A
 + L

A
 (lower triangle, including diagonal)

• SOR method:

Jacobi in Pictures

Jacobi Method
Given a square system of n linear equations:

where:

Jacobi Method

Then A can be decomposed into a diagonal component D, and the remainder R:

Jacobi Method
The solution is then obtained iteratively via

The computation of x
i
(k+1) requires each element in x(k) except itself. Unlike

the Gauss–Seidel method, we can't overwrite x
i
(k) with x

i
(k+1), as that value will be

needed by the rest of the computation. The minimum amount of storage is two
vectors of size n.

Jacobi Method
Algorithm.

• Choose your initial guess, x[0]
• Start iterating, k=0

• While not converged do
• Start your i-loop (for i = 1 to n)

• sigma = 0
• Start your j-loop (for j = 1 to n)

• If j not equal to i
• sigma = sigma + a[i][j] * x[j]

k
• End j-loop

• x[i]
k
 = (b[i] – sigma)/a[i][i]

• End i-loop
• Check for convergence

• Iterate k, ie. k = k+1

What about the Lower and Upper
Triangles?

If we write D, L, and U for the diagonal, strict lower triangular and strict upper triangular and
parts of A, respectively,

then Jacobi’s Method can be written in matrix-vector notation as

so that

GS in Pictures

Gauss-Seidel
K = D

A
+ L

A

Algorithm:
for k = 1, ... until convergence, do:

for i = 1 ... n:

Implementation:
for k = 1, ... until convergence, do:

for i = 1 ... n:

Ax=b => (D
A
+L

A
+U

A
)x=b

(D
A
 +L

A
)xk+1= -U

A
xk + b

{D
A
}

ii
=a

ii
 {U

A
or L

A
}

ij
=a

ij
 i≠j

Gauss-Seidel Method
Given a square system of n linear equations:

where:

Gauss-Seidel Method

The system of linear equations may be rewritten as:

Gauss-Seidel Method

Which gives us:

Gauss-Seidel Method
Algorithm:

• Choose your initial guess, theta[0]
• While not converged do:

• Start your i-loop (for i = 1 to n)
• sigma = 0
• Start your j-loop (for j = 1 to n)

• If j not equal to i
• sigma = sigma + a[i][j] * theta[j]

• End j-loop
• theta[i] = (b[i] – sigma)/a[i][i]

• End i-loop
• Check for convergence

• iterate

Stopping Tests
When to stop converging? Can size of the error be guaranteed?

• Direct tests on error e
n
 = x - x

n
 impossible; two choices

• Relative change in the computed solution small:

• Residual small enough:

Without proof: both imply that the error is less than some other

Python - NumPy

104

"Numerical Python"

 open source extension module for Python
 provides fast precompiled functions for

mathematical and numerical routines
 adds powerful data structures for efficient

computation of multi-dimensional arrays and
matrices.

NumPy, First Steps

Let build a simple list, turn it into a numpy array
and perform some simple math.

105

import numpy as np
cvalues = [25.3, 24.8, 26.9, 23.9]
C = np.array(cvalues)
print(C)

NumPy, First Steps

Let build a simple list, turn it into a numpy array
and perform some simple math.

vs.

106

print(C * 9 / 5 + 32)

fvalues = [x*9/5 + 32 for x in cvalues]
print(fvalues)

NumPy, Cooler things

107

import time
size_of_vec = 1000
def pure_python_version():
 t1 = time.time()
 X = range(size_of_vec)
 Y = range(size_of_vec)
 Z = []
 for i in range(len(X)):
 Z.append(X[i] + Y[i])
 return time.time() - t1

def numpy_version():
 t1 = time.time()
 X = np.arange(size_of_vec)
 Y = np.arange(size_of_vec)
 Z = X + Y
 return time.time() - t1

NumPy, Cooler things

108

t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)

Let's see which is faster.

NumPy, Multi-Dimension Arrays

109

A = np.array([[3.4, 8.7, 9.9],
 [1.1, -7.8, -0.7],
 [4.1, 12.3, 4.8]])
print(A)
print(A.ndim)

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B)
print(B.ndim)

NumPy, Multi-Dimension Arrays

110

x = np.array([[67, 63, 87],
 [77, 69, 59],
 [85, 87, 99],
 [79, 72, 71],
 [63, 89, 93],
 [68, 92, 78]])
print(np.shape(x))

The shape function:

NumPy, Multi-Dimension Arrays

111

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

The shape function can also *change* the shape:

NumPy, Multi-Dimension Arrays

112

x = np.array(42)
print(np.shape(x))

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B.shape)

A couple more examples of shape:

NumPy, Multi-Dimension Arrays

113

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])

print the first element of F, i.e. the element with the index 0

print(F[0])

print the last element of F

print(F[-1])

B = np.array([[[111, 112], [121, 122]],
 [[211, 212], [221, 222]],
 [[311, 312], [321, 322]]])
print(B[0][1][0])

indexing:

NumPy, Multi-Dimension Arrays

114

A = np.array([
[11,12,13,14,15],
[21,22,23,24,25],
[31,32,33,34,35],
[41,42,43,44,45],
[51,52,53,54,55]])

print(A[:3,2:])

print(A[3:,:])

slicing:

NumPy, Multi-Dimension Arrays

115

np.identity(4)

function to create an identity array

NumPy, By Example

116

 def TimeStep(self, dt=0.0):
 """Takes a time step using straight forward Python loops."""
 g = self.grid
 nx, ny = g.u.shape
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 err = 0.0
 for i in range(1, nx-1):
 for j in range(1, ny-1):
 tmp = u[i,j]
 u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
 (u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
 diff = u[i,j] - tmp
 err += diff*diff
 return numpy.sqrt(err)

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, By Example

117

def numericTimeStep(self, dt=0.0):
 """Takes a time step using a NumPy expression."""
 g = self.grid
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 g.old_u = u.copy() # needed to compute the error.

 # The actual iteration
 u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
 (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

 return g.computeError()

The example we will consider is a very simple (read, trivial) case of solving the 2D Laplace equation using an
iterative finite difference scheme (four point averaging, Gauss-Seidel or Gauss-Jordan). The formal
specification of the problem is as follows. We are required to solve for some unknown function u(x,y) such
that ∇2u = 0 with a boundary condition specified. For convenience the domain of interest is considered to be
a rectangle and the boundary values at the sides of this rectangle are given.

NumPy, Exercise

118

Algorithm.

* Find D, the Diagonal of of A : diag(A)

* Find R, the Remainder of A - D : A - diagflat(A)

* Choose your initial guess, x[0]
 * Start iterating, k=0
 * While not converged do
 * Start your i-loop (for i = 1 to n)
 * sigma = 0
 * Start your j-loop (for j = 1 to n)
 * If j not equal to i
 * sigma = sigma + a[i][j] * x[j][k]
 * End j-loop
 * x[i]k = (b[i] – sigma)/a[i][i] : x = (b - dot(R,x)) / D
 * End i-loop
 * Check for convergence
 * Iterate k, ie. k = k+1

Jacobi

Questions? Comments?

119

